

BLOCO N.º 10		Makandákina A	
ANO(S)	11.°	Matemática A	
APRENDIZAGENS ESSENCIAIS		 Utilizar as fórmulas trigonométricas de "redução ao 1.º quadrante" e a fórmula fundamental da Trigonometria na resolução de problemas. 	

Título/Tema do Bloco

Fórmulas trigonométricas de «redução ao primeiro quadrante ».

Tarefas/ Atividades/ Desafios

1. Exemplo 1

Sabendo que:

x	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
sen x	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cos x	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
tg x	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

Determina o valor exato de:

sen
$$\left(-\frac{\pi}{4}\right) + \cos\left(-\frac{\pi}{6}\right)$$

Sec./11.º ano

2. Exemplo 2

Sabendo que:

Sec./11.° ano

x	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
sen x	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cos x	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
tg x	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

Determina o valor exato de:

sen
$$\left(\frac{3\pi}{4}\right)$$
 + tg $\left(-\frac{4\pi}{3}\right)$

3. Exemplo 3

Sabendo que:

Sec./11.° ano

x	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
sen x	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cos x	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
tg x	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

Determina o valor exato de:

$$2 \operatorname{tg} \left(\frac{7\pi}{6} \right) - \operatorname{sen} \left(-\frac{3\pi}{4} \right)$$

4. Tarefa 1

Sabendo que: Sec./11.º ano

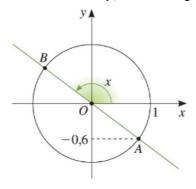
x	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
sen x	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cos x	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
tg x	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

Determina o valor exato de:

$$\operatorname{sen} \left(\frac{10\pi}{3}\right) - \operatorname{sen} \left(-\frac{\pi}{4}\right) + 2 \cos \left(-\frac{7\pi}{6}\right)$$

5. Tarefa 2

Simplifica a seguinte expressão:


sen
$$(2\pi - x) + 2$$
sen $(\pi + x) - \cos(x - \pi)$

Sec./11.° ano

6. Tarefa 3

Na figura está representado, em referencial o.n. x0y, o círculo trigonométrico.

Sec./11.° ano

Sabe-se que:

- [AB] é um diâmetro da circunferência;
- x é a amplitude, em radianos, do ângulo que tem como lado origem o semieixo positivo Ox e lado extremidade $\dot{O}B$;
- a ordenada do ponto $A \in -0.6$.

Determina:

6.1. $\cos (\pi + x)$

6.2. tg *x*

6.3. sen
$$(-x + 5\pi) + \cos (-x)$$

Adaptado de Dimensões 11- Santillana